On a Particular Type of Convergence to a Singular Matrix.
نویسندگان
چکیده
I Bellman, R., "On the Theory of Dynamic Programming," PROC. NATL. ACAD. Sci., 38, 716-719 (1952). 2 Bellman, R., "Some Functional Equations in the Theory of Dynamic Programming," Ibid., 39, 1077-1082 (1953). ' Bellman, R., "Bottleneck Problems and Dynamic Programming," Ibid., 39, 947-951 (1953). 4 Bellman, R., "A Problem in the Theory of Dynamic Programming," Econometrica (to appear). 6 Bellman, R., "Computational Problems in the Theory of Dynamic Programming," Proc. Symposium on Numerical Analysis, Santa Monica, 1953. 6 Bellman, R., and Blackwell, D., "Some Two-Person Games Involving Bluffing," PROC. NATL. ACAD. SCI., 35, 600-605 (1949).
منابع مشابه
Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملNumerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملA Numerical Method For Solving Physiology Problems By Shifted Chebyshev Operational Matrix
In this study, a numerical solution of singular nonlinear differential equations, stemming from biology and physiology problems, is proposed. The methodology is based on the shifted Chebyshev polynomials operational matrix of derivative and collocation. To assess the accuracy of the method, five numerical problems, such as the human head, Oxygen diffusion and Bessel differential equation, were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 40 2 شماره
صفحات -
تاریخ انتشار 1954